I. Introduction
II. Keywords
III. Slides
 A. Pituitary Gland
 1. General structure
 2. Regions
 a. Anterior pituitary
 b. Posterior pituitary
 B. Pineal Gland
 C. Thyroid Gland
 D. Parathyroid Glands
 E. Adrenal (Suprarenal) Glands
 1. General structure
 2. Regions
 a. Cortex
 b. Medulla
 F. Endocrine Pancreas
IV. Summary

Fig 20-1, Junqueira, 13th ed.
I. Introduction

II. Keywords

III. Slides

A. Pituitary Gland
 1. General structure
 2. Regions
 a. Anterior pituitary
 b. Posterior pituitary

B. Pineal Gland

C. Thyroid Gland

D. Parathyroid Glands

E. Adrenal (Suprarenal) Glands
 1. General structure
 2. Regions
 a. Cortex
 b. Medulla

F. Endocrine Pancreas

IV. Summary

Keywords

- Acidophils
- Adrenal cortex
- Adrenal gland
- Adrenal medulla
- Anterior pituitary
- Basophils
- Chromaffin cells
- Chromophils
- Chromophobes
- Colloid
- Corpora arenacea
- Follicular cell
- Herring body
- Islets of Langerhans
- Oxyphil cell
- Pancreas
- Parafollicular cell

- Parathyroid gland
- Pars distalis
- Pars intermedia
- Pars nervosa
- Pineal gland
- Pinealocytes
- Pituicytes
- Pituitary gland
- Posterior pituitary
- Principal (chief) cell
- Rathke’s pouch
- Thyroid follicle
- Thyroid gland
- Venous sinuses
- Zona fasciculata
- Zona glomerulosa
- Zona reticularis
the above slide shows the pituitary gland (hypophysis) in situ, within the sella turcica (Lt. “Turkish saddle”) of the sphenoid bone, demonstrating its close proximity to the optic chiasm and its relationship to the hypothalamus of the brain; the hypothalamus is involved in controlling body homeostasis and is thus the chief regulator of the hormonal activities of the pituitary gland (the “master gland”)
the pituitary gland (hypophysis) is a compound gland composed of two embryologically, functionally, and histologically distinct regions: the anterior pituitary containing epithelium and the posterior pituitary containing nervous tissue; the two regions are separated by the pars intermedia (part of the anterior pituitary); the hypothalamus connects directly to the posterior pituitary via a short stalk of nervous tissue called the infundibulum, while it “connects” to the anterior pituitary via a vascular hypophyseal portal system.
the anterior pituitary (adenohypophysis) consists of three subdivisions: the pars distalis (anterior lobe) which composes the majority of the tissue, the pars tuberalis which surrounds the infundibulum, and the pars intermedia which is adjacent to the pars nervosa (posterior pituitary) and is characterized by multiple colloid-filled follicles of unknown significance; the posterior pituitary (neurohypophysis) consists of the pars nervosa (posterior lobe) and the infundibulum which connects to the hypothalamus.
Lab 19 – Endocrine System
IUSM – 2016

I. Introduction
II. Keywords
III. Slides
 A. Pituitary Gland
 1. General structure
 2. Regions
 a. Anterior pituitary
 b. Posterior pituitary
 B. Pineal Gland
 C. Thyroid Gland
 D. Parathyroid Glands
 E. Adrenal (Suprarenal) Glands
 1. General structure
 2. Regions
 a. Cortex
 b. Medulla
 F. Endocrine Pancreas
IV. Summary
cells of the anterior pituitary (pars distalis shown above) are classified according to their cytoplasmic affinity for stains: acidophils have strongly-staining acidophilic (eosinophilic) cytoplasm; different types of acidophils secrete growth hormone and prolactin; basophils (less numerous) have strongly-staining basophilic cytoplasm; different types secrete ACTH, FSH/LH, and TSH; chromophobes are identified by their pale-staining cytoplasm and absence of secretory granules; they represent several different types of cells, including stem cells and degranulated cells.
the pars nervosa (posterior lobe) is composed primarily of unmyelinated axons – not collagenous CT – which are part of the hypothalamo-hypophyseal tract; the cell bodies of the axons are located in the supraoptic and paraventricular nuclei of the hypothalamus where they synthesize ADH and oxytocin which are then transported down the axons into the pars nervosa to their neurosecretory terminal ends called Herring bodies to await release into the blood (nothing is synthesized in the posterior pituitary); pituicytes, a type of glial cell, are the majority of nuclei seen above and function to support the axons.
the pineal gland is located along the posterior wall of the third ventricle in the brain; it is a photosensitive gland that regulates body rhythms chiefly through the release of melatonin (in the absence of light) from pinealocytes, the principal cells of the gland
pinealocytes are the principal cells of the pineal gland; they are arranged in clumps of cells and have large rounded – or indented – nuclei usually with prominent nucleoli; the cytoplasm is slightly basophilic and contains lipid droplets; **corpora arenacea** (Lt. “sandy bodies”) are a readily identifiable characteristic of the pineal gland – they do not serve a known physiologic function but are useful radiographic markers.
I. Introduction

II. Keywords

III. Slides

A. Pituitary Gland
 1. General structure
 2. Regions
 a. Anterior pituitary
 b. Posterior pituitary

B. Pineal Gland

C. Thyroid Gland

D. Parathyroid Glands

E. Adrenal (Suprarenal) Glands
 1. General structure
 2. Regions
 a. Cortex
 b. Medulla

F. Endocrine Pancreas

IV. Summary

The thyroid gland is a bi-lobed gland surrounding the anterolateral portions of the trachea; it is characterized and easily recognized by the presence of numerous tightly-packed, colloid-filled follicles; it secretes thyroid hormones (T4/T3) which regulate metabolism and calcitonin which decreases serum calcium levels.
the thyroid gland is characterized by follicles filled with eosinophilic colloid consisting of thyroglobulin; the colloid is synthesized by the follicular cells which form the wall of the lumen, thus the cells are exocrine cells; the thyroglobulin is also resorbed by the follicular cells and formed into active thyroid hormones (T4/T3) which are then released into the circulation, thus the cells are also endocrine cells
the thyroid gland consists of two major cell types: follicular cells are cuboidal epithelial cells that line the lumens of the follicles; they generally have abundant rough ER and a prominent Golgi apparatus; parafollicular cells, which secrete calcitonin, can be difficult to definitively identify on routine human samples; they may appear larger and lighter-staining than the follicular cells, and may be seen as single cells or clumps of cells located to the periphery of the follicles or in the interstitial CT between the follicles
I. Introduction

II. Keywords

III. Slides

A. Pituitary Gland
 1. General structure
 2. Regions
 a. Anterior pituitary
 b. Posterior pituitary

B. Pineal Gland

C. Thyroid Gland

D. Parathyroid Glands

E. Adrenal (Suprarenal) Glands
 1. General structure
 2. Regions
 a. Cortex
 b. Medulla

F. Endocrine Pancreas

IV. Summary

Slide 195 (NW): Thyroid and Parathyroid, H&E

- *venule* lined by simple squamous endothelium
- *follicle* filled with *colloid* and lined by simple cuboidal follicular cells

Slide 2: Trachea and Thyroid, Trichrome

- *resorption lacunae* demonstrate active follicles as the colloid is being resorbed by the follicular cells to be secreted as thyroid hormones
I. Introduction

II. Keywords

III. Slides
 A. Pituitary Gland
 1. General structure
 2. Regions
 a. Anterior pituitary
 b. Posterior pituitary
 B. Pineal Gland
 C. Thyroid Gland
 D. Parathyroid Glands
 E. Adrenal (Suprarenal) Glands
 1. General structure
 2. Regions
 a. Cortex
 b. Medulla
 F. Endocrine Pancreas

IV. Summary

there are generally four small **parathyroid glands** embedded on the posterior aspect of the thyroid gland; the thyroid and parathyroid glands are separated by a thin connective tissue capsule; the parathyroid glands are usually easily distinguished from the thyroid gland by the lack of follicles
the parathyroid glands consist of two major cell types arranged in cords and clumps of cells: principal cells are non-distinct cells that produce parathyroid hormone (PTH) which increases serum calcium levels; oxyphil cells (Gr: “acid loving”) are larger and have an eosinophilic cytoplasm full of mitochondria, but have no known function; they may be found individually or in small clumps of cells and usually appear around puberty and increase in number with age.
the adrenal (suprarenal) glands are small compound endocrine glands located on the superior pole of each kidney; each gland is surrounded by a dense CT capsule and contains two embryologically, functionally, and histologically distinct regions: the darker-staining cortex secretes steroid hormones made from cholesterol, and the lighter-staining medulla, essentially a sympathetic ganglion, secretes catecholamines (epinephrine and norepinephrine); note that the slide above shows the gland as “folded” around surrounding adipose tissue, not to be confused for the medulla of the gland
the fetal adrenal gland is relatively large compared to the other fetal organs, but it lacks a defined medulla and the bulk of the cortex is composed of cords of cells, called the fetal zone, which regress after birth; by birth the glands produces twice as much total steroid hormones as do the adult glands – however they are incapable of completing all the necessary steps of steroid synthesis so they work with the placenta as a combined fetal-placental unit to synthesize functional hormones; soon after birth the fetal zone undergoes a rapid regression, and the adrenal gland with an “adult” cortex and medulla then develops during the first few years of life
the steroid-producing cortex of the adrenal glands is organized into three concentric zones which each produces a principal type of steroid hormone: the outer zona glomerulosa produces mineralocorticoids (aldosterone), the middle zona fasciculata produces glucocorticoids (cortisol), and the inner zona reticularis produces sex hormones (androgens); the order of the layers can be remembered with the simple mnemonic GFR (denoting the gland’s association with the kidney) or Go Find Rex, Make Good Sex which includes the hormones
the **zona glomerulosa** (Lat. “ball-shaped”) is directly adjacent to the capsule and contains cells arranged in small ball-shaped clusters (not to be confused with ducts – which endocrine glands lack); surrounding the cell clusters are numerous sinusoidal capillaries (sinusoids); the cells produce **mineralocorticoid steroid hormones** (*aldosterone*) which leads to increased sodium reabsorption (and potassium excretion) in the distal tubules of the kidney (water follows the sodium thereby leading to an increase in blood pressure)
I. Introduction
II. Keywords
III. Slides
 A. Pituitary Gland
 1. General structure
 2. Regions
 a. Anterior pituitary
 b. Posterior pituitary
 B. Pineal Gland
 C. Thyroid Gland
 D. Parathyroid Glands
 E. Adrenal (Suprarenal) Glands
 1. General structure
 2. Regions
 a. Cortex
 b. Medulla
 F. Endocrine Pancreas
IV. Summary

the zona fasciculata (Lt. “little bundle”) is the middle and the thickest of the cortical layers; the cells are arranged in long parallel cords (1 or 2 cells thick) running perpendicular to the surface of the gland; the cells have the typical appearance of steroid-producing cells and contain more lipid droplets than in the other layers giving the layer an overall lighter-staining appearance; the cords are separated by numerous sinusoidal capillaries (sinusoids); the cells produce glucocorticoid steroid hormones (cortisol) which have a wide range of effects on nearly every tissue in the body.
the **zona reticularis** (Lt. “net-like”) is the innermost cortical layer and borders the medulla; the cells are arranged into a network of anastomosing cords which are separated by numerous sinusoidal capillaries (sinusoids); the cells have less cytoplasm than in the other layers so pack more tightly together thus giving the layer a darker-staining appearance than the adjacent zona fasciculata or the medulla; the cells produce **sex hormones** (*weak androgens*, e.g. DHEA) which are functionally more important in females than in males.
I. Introduction

II. Keywords

III. Slides
A. Pituitary Gland
 1. General structure
 2. Regions
 a. Anterior pituitary
 b. Posterior pituitary
B. Pineal Gland
C. Thyroid Gland
D. Parathyroid Glands
E. Adrenal (Suprarenal) Glands
 1. General structure
 2. Regions
 a. Cortex
 b. Medulla
F. Endocrine Pancreas

IV. Summary

the medulla of the adrenal gland is comparable to a sympathetic ganglion but releases its catecholamines (epinephrine and norepinephrine) into the blood instead of at synapses; the chromaffin cells are large, pale-staining, polyhedral cells; they are arranged into clumps or cords surrounded by numerous sinusoidal capillaries (sinusoids) which drain into larger blood vessels prominent in the medulla
the endocrine portion of the pancreas is composed of discrete cell clusters called pancreatic islets that contain a variety of cell types which produce various hormones including insulin (from beta cells) and glucagon (from alpha cells); the cells are arranged into cords surrounded by numerous sinusoidal capillaries (sinusoids); the individual cell types (e.g., α and β cells) cannot be distinguished in routine light microscopy
Common Confusion:
Parathyroid gland vs. Parotid gland

Parathyroid gland: small endocrine glands (usually four) located on the posterior of the thyroid gland; secrete parathyroid hormone (PTH) which increases serum calcium.

Look for: (1) lack of exocrine ducts – not to be confused with blood vessels; (2) cords/clumps of cells separated by numerous sinusoids; (3) clusters of larger, eosinophilic oxyphil cells may be present; (4) cells are more tightly packed than the secretory acini cells of exocrine glands.

Parotid gland: major salivary exocrine gland located anterior to the ear; composed almost exclusively of serous acini that produce a thin watery secretion rich in enzymes.

Look for: (1) intralobular ducts, with cuboidal epithelium, are readily visible; (2) cells are arranged into acini and appear less dense than in endocrine glands; (3) cells have a polarized appearance with nuclei located basally.
Common Confusion:
Corpora arenacea vs. Corpora amylacea

Corpora arenacea: (Lt. “sandy bodies”) calcified structures generally found in the pineal gland but can be found elsewhere in the CNS including the choroid plexus and leptomeninges.

Look for: (1) deposits generally lack concentric layers and may have a more “blobby” appearance; (2) in the pineal gland, concretions are surrounded by neuropil and pinealocytes – not within an epithelium-lined lumen.

Corpora amylacea: (Lt. “starchy bodies”) generally found in the prostate gland but can be found elsewhere throughout the body, including the CNS; composed of glycoproteins and keratin sulfate that may become calcified.

Look for: (1) “hyaline” appearance with concentric layers, like a starch granule; (2) in the prostate, concretions are located in lumens of glands lined by columnar epithelium; glands are surrounded by stroma of dense CT and smooth muscle.
Characteristics and Functions of Cells of the Endocrine System

<table>
<thead>
<tr>
<th>Cell</th>
<th>Location</th>
<th>Appearance</th>
<th>Hormone(s) Secreted</th>
<th>Hormone Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>basophil cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>parafollicular cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zona glomerulosa cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>follicular cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β (beta) cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chromaffin cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxyphil cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinealocyte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>principal (chief) cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>